An in vitro and in vivo evaluation of the efficacy of recombinant human liver prolidase as a catalytic bioscavenger of chemical warfare nerve agents.
نویسندگان
چکیده
In this study, we determined the ability of recombinant human liver prolidase to hydrolyze nerve agents in vitro and its ability to afford protection in vivo in mice. Using adenovirus containing the human liver prolidase gene, the enzyme was over expressed by 200- to 300-fold in mouse liver and purified to homogeneity by affinity and gel filtration chromatography. The purified enzyme hydrolyzed sarin, cyclosarin and soman with varying rates of hydrolysis. The most efficient hydrolysis was with sarin, followed by soman and by cyclosarin {apparent kcat/Km [(1.9 ± 0.3), (1.7 ± 0.2), and (0.45 ± 0.04)] × 10(5 )M(-1 )min(-1), respectively}; VX and tabun were not hydrolyzed by the recombinant enzyme. The enzyme hydrolyzed P (+) isomers faster than the P (-) isomers. The ability of recombinant human liver prolidase to afford 24 hour survival against a cumulative dose of 2 × LD50 of each nerve agent was investigated in mice. Compared to mice injected with a control virus, mice injected with the prolidase expressing virus contained (29 ± 7)-fold higher levels of the enzyme in their blood on day 5. Challenging these mice with two consecutive 1 × LD50 doses of sarin, cyclosarin, and soman resulted in the death of all animals within 5 to 8 min from nerve agent toxicity. In contrast, mice injected with the adenovirus expressing mouse butyrylcholinesterase, an enzyme which is known to afford protection in vivo, survived multiple 1 × LD50 challenges of these nerve agents and displayed no signs of toxicity. These results suggest that, while prolidase can hydrolyze certain G-type nerve agents in vitro, the enzyme does not offer 24 hour protection against a cumulative dose of 2 × LD50 of G-agents in mice in vivo.
منابع مشابه
Persistent and high-level expression of human liver prolidase in vivo in mice using adenovirus.
Human liver prolidase, a metal-dependent dipeptidase, is being tested as a potential catalytic bioscavenger against organophosphorus (OP) chemical warfare nerve agents. The purpose of this study was to determine whether persistent and high-levels of biologically active and intact recombinant human (rHu) prolidase could be introduced in vivo in mice using adenovirus (Ad). Here, we report that a ...
متن کاملProtective efficacy of catalytic bioscavenger, paraoxonase 1 against sarin and soman exposure in guinea pigs.
Human paraoxonase 1 (PON1) has been portrayed as a catalytic bioscavenger which can hydrolyze large amounts of chemical warfare nerve agents (CWNAs) and organophosphate (OP) pesticides compared to the stoichiometric bioscavengers such as butyrylcholinesterase. We evaluated the protective efficacy of purified human and rabbit serum PON1 against nerve agents sarin and soman in guinea pigs. Cataly...
متن کاملDocking Studies, Synthesis, and In-vitro Evaluation of Novel Oximes Based on Nitrones as Reactivators of Inhibited Acetylcholinesterase
Acetylcholinesterase has important role in synaptic cleft. It breaks down the acetylcholineatcholinergic synapsesand terminates the cholinergic effects. Some chemical agents likeorganophosphorus compounds (OPCs) including nerve agents and pesticides react withacetylcholinesteraseirreversibly. They inhibit normal biological enzyme action and resultin accumulation of acetylcholineand show toxic e...
متن کاملDocking Studies, Synthesis, and In-vitro Evaluation of Novel Oximes Based on Nitrones as Reactivators of Inhibited Acetylcholinesterase
Acetylcholinesterase has important role in synaptic cleft. It breaks down the acetylcholineatcholinergic synapsesand terminates the cholinergic effects. Some chemical agents likeorganophosphorus compounds (OPCs) including nerve agents and pesticides react withacetylcholinesteraseirreversibly. They inhibit normal biological enzyme action and resultin accumulation of acetylcholineand show toxic e...
متن کاملRecent Advances In Treatment of Acute Organophosphorous Nerve Agents Poisoning
Organophosphorous (OP) chemical warfare nerve agents mainly sarin and tabun were used during the Iran-Iraq war with high mortalities. In addition to atropine and oximes, the followings have recently been used successfully for the treatment of OP poisoning. 1. Sodium Bicarbonate: Infusion of high doses of sodium bicarbonate (5 mEq/kg in 60 min. followed by 5-6 mEq/kg/day to obtain arterial blood...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug and chemical toxicology
دوره 38 1 شماره
صفحات -
تاریخ انتشار 2015